Potent inhibition of cytochrome P-450 2D6-mediated dextromethorphan O-demethylation by terbinafine.
نویسندگان
چکیده
Cytochrome P-450 (CYP) 2D6 is responsible for the biotransformation of over 35 pharmacologic agents. In the process of studying CYP2D6 we identified phenotype-genotype discordance in two individuals receiving terbinafine. This prompted evaluation of the potential for terbinafine to inhibit CYP2D6 in vitro. Human hepatic microsomes and heterologously expressed CYP2D6 were incubated with terbinafine or quinidine and the formation of dextrorphan from dextromethorphan was determined by HPLC. Additionally, preliminary conformational analyses were conducted to determine the fit of terbinafine into a previously described pharmacophore model for CYP2D6 inhibitors. The apparent Km and Vmax of dextrorphan formation from four human hepatic microsome samples ranged from 5.8 to 6.8 microM and from 172 to 300 pmol/min/mg protein, respectively. Values of Km and Vmax in the heterologously expressed CYP2D6 system averaged 6.5 +/- 2.1 microM and 1342 +/- 147 pmol/min/mg protein, respectively. Terbinafine inhibited dextromethorphan O-demethylation with an apparent Ki ranging from 28 to 44 nM in human hepatic microsomes and averaging 22.4 +/- 0.6 nM for the heterologously expressed enzymes. Results of quinidine in these systems produced values for Ki ranging from 18 to 43 nM. Such strong inhibition of CYP2D6 by terbinafine would not have been predicted by the previously proposed pharmacophore model of CYP2D6 inhibitors based on molecular structure. Terbinafine is a potent inhibitor of CYP2D6 with apparent Ki values well below plasma and tissue concentrations typically achieved during a therapeutic course. This agent needs to be evaluated in vivo to determine the impact of CYP2D6 inhibition by terbinafine on the metabolism of concomitantly administered CYP2D6 substrates.
منابع مشابه
Multiple cytochrome P-450s involved in the metabolism of terbinafine suggest a limited potential for drug-drug interactions.
Biotransformation pathways and the potential for drug-drug interactions of the orally active antifungal terbinafine were characterized using human liver microsomes and recombinant human cytochrome P-450s (CYPs). The terbinafine metabolites represented four major pathways: 1) N-demethylation, 2) deamination, 3) alkyl side chain oxidation, and 4) dihydrodiol formation. Michaelis-Menten kinetics f...
متن کاملSelective inhibition of cytochrome P450 2D6 by Sarpogrelate and its active metabolite, M-1, in human liver microsomes.
The present study was performed to evaluate the in vitro inhibitory potential of sarpogrelate and its active metabolite, M-1, on the activities of nine human cytochrome (CYP) isoforms. Using a cocktail assay, the effects of sarpogrelate on nine CYP isoforms and M-1 were measured by specific marker reactions in human liver microsomes. Sarpogrelate potently and selectively inhibited CYP2D6-mediat...
متن کاملSafety and tolerability of oral antifungal agents in the treatment of fungal nail disease: a proven reality
Clinicians now have five oral antifungal therapeutic agents to choose from when assessing the risk-benefits associated with a particular treatment for onychomycosis (OM): griseofulvin, itraconazole, terbinafine, ketoconazole, and fluconazole. Only the first three are approved by the FDA for this indication. Griseofulvin is fungistatic and inhibits nucleic acid synthesis, arresting cell division...
متن کاملEvidence for a role of cytochrome P450 2D6 and 3A4 in ethylmorphine metabolism.
Ethylmorphine is metabolised by N-demethylation (to norethylmorphine) and by O-deethylation (to morphine). The O-deethylation reaction was previously shown in vivo to co-segregate with the O-demethylation of dextromethorphan indicating that ethylmorphine is a substrate of polymorphic cytochrome P450(CYP)2D6. To study further the features of ethylmorphine metabolism we investigated its N-demethy...
متن کاملLack of single-dose disulfiram effects on cytochrome P-450 2C9, 2C19, 2D6, and 3A4 activities: evidence for specificity toward P-450 2E1.
Disulfiram and its primary metabolite diethyldithiocarbamate are effective mechanism-based inhibitors of cytochrome P-450 2E1 (CYP2E1)1 in vitro. Single-dose disulfiram diminishes CYP2E1 activity in vivo and has been used to identify CYP2E1 participation in human drug metabolism and prevent CYP2E1-mediated toxification. Specificity of single-dose disulfiram toward CYP2E1 in vivo, however, remai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 27 7 شماره
صفحات -
تاریخ انتشار 1999